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Let J(t) be the the integrated flux of particles in the symmetric simple exclusion
process starting with the product invariant measure nr with density r. We
compute its rescaled asymptotic variance:

lim
tQ.
t−1/2VJ(t)=`2/p (1−r) r

Furthermore we show that t−1/4J(t) converges weakly to a centered normal
random variable with this variance. From these results we compute the asymp-
totic variance of a tagged particle in the nearest neighbor case and show the
corresponding central limit theorem.
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RESULTS

The nearest neighbors symmetric simple exclusion process describes the
evolution of particles sitting at the sites of Z evolving as follows. At most
one particle is allowed at each site. If there is a particle at a given site, at
rate one the particle chooses one of its nearest neighbor sites with proba-
bility 1/2 and attempts to jump to this site. The jump is effectively realized
if the destination site is empty; if not, the jump is suppressed. A formal
definition using Poisson processes is given below. The generator of the
process is given by

Lf(g)=1
2 C
x ¥ Z

[f(gx, x+1)−f(g)] (1)



where gx, x+1(x)=g(x+1), gx, x+1(x+1)=g(x) and gx, x+1(y)=g(y) for
y ] x, x+1. For each r ¥ [0, 1] the product measure nr with density r is
invariant for the process.
For an initial configuration g let the integrated flux of particles J(t)=

Jg(t) be the number of particles to the left of the origin at time zero and to
the right of it at time t minus the number of particles to the right of the
origin at time 0 and to the left of it at time t.
Fix r ¥ (0, 1) and let the initial configuration have law nr. Let

VJ(t)=EnrJ(t)2=: F dnr(g)(Jgt )2

(Notice that EnrJ(t)=0.)
We prove the following asymptotics for the variance:

lim
tQ.
t−1/2VJ(t)=`2/p (1−r) r :=s2 (2)

We then prove the following central limit theorem for the integrated flux:

t−1/4J(t) converges weakly toN(0, s2) (3)

whereN(0, s2) is a centered normal random variable with variance s2.
Finally, let X(t) be the position of a tagged particle interacting by

exclusion. We show that if the initial configuration is chosen with the
product measure nr, then

lim
tQ.
t−1/2Enr(X(t)−r−1J(t))2=0 (4)

An immediate consequence of (2), (3) and (4) is that, defining VX(t)=
Enr(X(t))2, the asymptotic variance of the tagged particle is

lim
tQ.
t−1/2VX(t)=`2/p

1−r
r
:=s̄2 (5)

and the tagged particle satisfies a central limit theorem:

t−1/4X(t) converges weakly toN(0, s̄2) (6)

The limits (5) and (6) were proven by Arratia. (1)

To prove the above results we use the stirring motion representation
of the symmetric exclusion process introduced by Harris (2) and used by
Arratia to prove (5) and (6).

678 Masi and Ferrari



THE STIRRING PROCESS

The stirring process z(i, t) ¥ Z, i ¥ Z, is defined as follows. At time
t=0 put a (labeled) particle at each site and define z(i, 0)=i for all i ¥ Z.
With each bond (x, x+1), x ¥ Z associate a Poisson process (clock) with
parameter 1/2. When the clock rings at the bond (x, x+1) the particles at
those sites interchange their positions. z(i, t) is the position at time t of the
particle sitting at i at time 0. Given an initial configuration g ¥X, it is
possible to define the simple exclusion process gt in terms of the stirring
process by setting

gt(x)=1{x ¥ {z(i, t) : g(i)=1}} (7)

FIRST PROOF OF (2)

In terms of the stirring process, we define the following random
variables.

K+(t)=C
i [ 0

1{z(i, t) > 0}; K−(t)=C
i > 0

1{z(i, t) [ 0} (8)

where 1{ · } is the characteristic function of the set { · }. The variable K+(t)
is the number of stirring particles starting at the left of the point 1/2 and
sitting at time t at the right of 1/2. The variable K−(t) is the number of
stirring particles starting at the right of the point 1/2 and sitting at time t
at the left of 1/2. Since at all times all sites are occupied by one stirring
particle, each crossing of the point 1/2 from left to right involves a simul-
taneous crossing in the opposite direction and viceversa. So K+(t)−K−(t)
is constant in t and since K+(0)=K−(0)=0, K+(t)=K−(t) :=K(t), for all
t \ 0. In the stirring process the representation of J(t) is given by

J(t)=C
i [ 0

1{z(i, t) > 0} g(i)− C
i > 0

1{z(i, t) [ 0} g(i) (9)

Let i1 < i2 < · · · < iK(t) [ 0 be the random sites for which z(ik, t) > 0 and
0 < j1 < j2 < · · · < jK(t) be the random sites for which z(jk, t) [ 0. Define
B+(k)=g(ik) and B−(k)=g(jk) and A(k)=B+(k)−B−(k). Thus

J(t)=C
K(t)

k=1
A(k) (10)
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Assume g is distributed according to the product measure nr. Then the
variables B+(k), B−(k) and K(t) are independent. Hence A(k) are iid
independent of K(t) with law

P(A(k)=1)=P(A(k)=−1)=r(1−r); P(A(k)=0)=1−2r(1−r)
(11)

Thus EA(k)=0, EA(k)2=2r(1−r) and by independence, using (10) we
have

EnrJ(t)2=EA(k)2 EK(t) (12)

To compute EK(t) write

EK(t)=C
i [ 0

P(z(i, t) > 0)=C
i \ 0

P(z(0, t) > i)=E(z(0, t))+

But z(0, t) is a symmetric random walk, thus, since t−1Ez(0, t)2 is uniformly
integrable,

lim
tQ.
t−1/2EK(t)=

1

`2p
(13)

Thus, using (12) we obtain (2).

SECOND PROOF OF (2)

From the definition we have

J(t)−F
t

0

1
2(gs(0)−gs(1)) :=M(t) (14)

whereM(t) is a martingale with variance

EnrM(t)2=tr(1−r) (15)

As in De Masi et al., (3, 4) from the time invariance of nr and the fact that
J(t) is an anti-symmetric random variable, it follows that

EnrJ(t)2=tr(1−r)− 12 F
t

0
ds(t−s) F nr(dg)(g(0)−g(1)) E(ggs (0)−ggs (1))

(16)
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where ggs is the exclusion process with initial configuration g. From the
reversibility and the translation invariance of nr,

F nr(dg)(g(0)−g(1)) E(ggs (0)−ggs (1))

=2 F nr(dg)(g(0) Eggs (0)−g(0) Eggs (1)) (17)

Calling L the generator of the process we have that

Lg(0)=1
2[g(1)−g(0)]+

1
2[g(−1)−g(0)] (18)

Therefore, using once more translation invariance

2 F nr(dg)(g(0) Eggs (0)−g(0) Eggs (1))=−2
d
ds
1F nr(dg) g(0)[Eggs (0)−r]2

(19)

We use (17) and (19) in the second term on the right hand side of (16) then,
integrating by parts, we get

F
t

0
(t−s)

d
ds
1F nr(dg) g(0) Eggs (0)−r22

=−tr(1−r)+F
t

0
F nr(dg) (g(0)−r) Eggs (0) (20)

From (16) and (20) we finally get

EnrJ(t)2=F
t

0
F nr(dg) (g(0)−r) Eggs (0) (21)

=r(1−r) Rt(0) (22)

where Rt(0) is the expected amount of time spent at the origin up to time t
for a continuous time symmetric random walk starting at zero. Finally,

lim
tQ.
t−1/2Rt(0)=`2/p (23)

PROOF OF (3)

To show (3) from (10) it is enough to show that

C(t) :=t−1/4 1 C
K(t)

k=1
A(k)− C

t1/2/`2p

k=1

A(k)2Q 0 as tQ. (24)
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in measure. Using Chebishev inequality we have, for any c > 0,

P(C(t) > c) [
EA(k)2

c2
E :K(t)
t1/2
−
1

`2p
:
Q 0 as tQ. (25)

The limit goes to zero because K(t) is the sum of negatively correlated 0–1
random variables and so VK(t) [ EK(t) ’`t Arratia (1) and by Schwarz
inequality.

PROOF OF (4)

We use a lattice version of a result of Dürr et al. (5) for an infinite ideal
gas of point particles on R. Suppose that the initial configuration g is dis-
tributed according to the invariant measure nr. Fix t \ 0. For k \ 0 let Yk(t)
be the position of the kth particle of gt to the right of 1/2, with Y0(t) [ 0.
For k < 0 let Yk(t) be the position of the −(k+1)th particle of gt to the left
of 1/2. (When time goes on the particles change these labels.) It is easy to
see that at time t the tagged particle (which at time t=0 is labeled 0) is the
J(t)th particle, that is:

X(t)=YJ(t)(t) (26)

By the ergodicity (under translations) and stationarity of nr we have that

lim
nQ.
n−1Yn(t)=r−1, Pnr-almost surely (27)

One can then prove (as in Lemma 2.8 of Dürr et al. (5)) that

lim
tQ.
t1/2Enr(YJ(t)(t)−r−1J(t))2=0 (28)

REMARK

This work was written when the authors visited Rutgers University in
1985 and was kept unpublished for more than 15 years. We decided to
publish it now for three reasons. The first proof of (2) is an application of
Arratia’s method, but it is not written anywhere; in fact, it is easier first to
compute the variance of the flux and then, as a corollary, the variance of
the tagged particle than vice versa. The second proof of (2) is the unique
application we know of the method of De Masi et al. (3, 4) that works for a
subdiffussive process. Finally, the flux in the simple exclusion process is
isomorphic to a 1+1 dimensional interface. The role of the entropic repul-
sion when this interface interacts by exclusion with a wall has been studied
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by Dunlop et al., (6) who compare the asymptotic variance of the flux for
the process starting with the deterministic configuration ...101010... with
the stationary process studied here.
Presumably our result can be obtained using the fact that the asymp-

totic behavior of the current can be deduced from the hydrodynamic
behavior of the symmetric simple exclusion and the asymptotics of the
density fluctuation field at equilibrium. This technique has been introduced
by Rost and Vares (7) and applied to the zero range process by Landim
et al. (8, 9) and Landim and Volchan. (10) We are not aware of any application
of this argument to our case and after consulting Landim and Olla it seems
that their results do not cover, at least automatically, ours. We thank an
anonymous referee, Errico Presutti, Claudio Landim and Stefano Olla for
pointing out this possibility.
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